### Microeconomía

#### Producción

#### Leandro Zipitría

Departamento de Economía Facultad de Ciencias Sociales - UdelaR

Maestría en Economía Internacional

### Índice

Introducción

Conjuntos de producción

Max beneficios, min costos Max beneficios

Min. costos

Geometría: un bien

Agregación

Producción eficiente

## Índice

#### Introducción

Conjuntos de producción

Max beneficios, min costos

Max beneficios

Min. costos

Geometría: un bien

Agregación

Producción eficiente

### Presentación

- Oferta de bienes y servicio realizada por unidades productivas: "empresas"
- ► Teoría sobre empresas activas y potenciales (inactivas)
- Empresas como "cajas negras": tecnología que transforma insumos en productos
- No se analiza: propiedad, gerenciamiento, organización interna, financiamiento, etc.
- ► Entorno: precios dados
- Motivación: empresas maximizan beneficios

## Previo: conjunto convexo

 Conjunto convexo: el promedio entre dos puntos del conjunto está dentro del conjunto

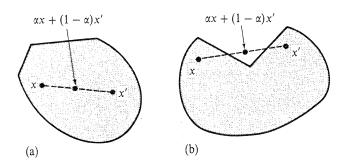
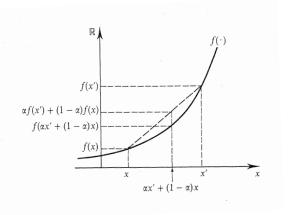


Figura: (a) Conjunto convexo; (b) Conjunto no convexo

### Previo: función convexa

► Función (estrictamente) convexa: el promedio de dos puntos de la curva están **sobre** la curva. Formalmente:

$$f\left(\alpha x' + (1-\alpha)x\right) \le \alpha f\left(x'\right) + (1-\alpha)f(x)$$



## Índice

#### Introducción

#### Conjuntos de producción

Max beneficios, min costos

Max beneficios

Min. costos

Geometría: un bien

Agregación

Producción eficiente

### Introducción

- L bienes
- ► **Vector de producción** (o plan de producción):  $v = (v_1, ..., v_t) \in \mathbb{R}^L$
- Convención: valores positivos = productos; valores negativos
   insumos
  - ► Ej.:  $L = 5 \Rightarrow y = (-5, 2, -6, 3, 0)$
- ▶ Conjunto de producción  $(Y \in \mathbb{R}^L)$ : es el conjunto de todos los vectores de producción que son factibles (dato del modelo)
- Función de transformación (F(.)):  $Y = \{ Y \in \mathbb{R}^L : F(y) \le 0 \}$
- ▶ Frontera de transformación:  $Y = \{Y \in \mathbb{R}^L : F(y) = 0\}$

## Función de transformación con un producto

- Función de producción: f(z) da el máximo nivel de producto q que se puede producir usando insumos  $(z_1, ..., z_{L-1}) \ge 0$
- ► Si L el producto  $\Rightarrow$  conjunto de producción  $Y = \{(-z_1, ..., -z_{L-1}, q) : q f(z_1, ..., z_{L-1}) \le 0\}$

## Propiedades conjuntos de producción

- 1. No vacío
- 2. Cerrado
- 3. No almuerzo gratis
- 4. Cierre es posible
- 5. Disposición gratis
- Irreversibilidad
- 7. Retornos a escala
- 8. Aditividad (libre entrada)
- 9. Convexidad

# Propiedades (I)

- No vacío: la empresa puede planear producir algo
- Y es cerrado: el conjunto de producción incluye la frontera
- No hay almuerzo gratis: no se puede producir sin insumos. ([Figura])
- ▶ Cierre es posible:  $0 \in Y$ 
  - No se cumple si hay costos hundidos ([Figura]): i) compromiso de gasto mínimo asumido; ii) insumo de producción fijo
- **Disposición gratis**: se puede eliminar los insumos extra (o producción) sin costo; si  $y \in Y$  y  $y' \le y \Rightarrow y' \in Y$
- ► **Irreversibilidad**: no se puede deshacer el proceso de producción; sea  $y \in Y$  y  $y \neq 0 \Rightarrow -y \notin Y$

## No almuerzo gratis

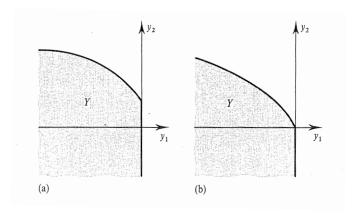


Figura: (a) Viola; (b) cumple no almuerzo gratis

### Costos hundidos

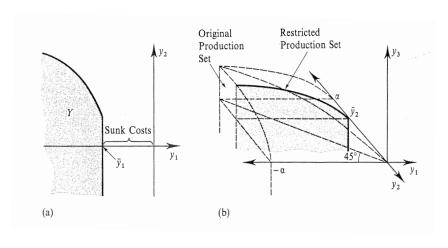


Figura: (a) Nivel mínimo de gasto comprometido; (b) un insumo fijo

# Propiedades (I)

- No vacío: la empresa puede planear producir algo
- Y es cerrado: el conjunto de producción incluye la frontera
- No hay almuerzo gratis: no se puede producir sin insumos. ([Figura])
- ▶ Cierre es posible:  $0 \in Y$ 
  - No se cumple si hay costos hundidos ([Figura]): i) compromiso de gasto mínimo asumido; ii) insumo de producción fijo
- **Disposición gratis**: se puede eliminar los insumos extra (o producción) sin costo; si  $y \in Y$  y  $y' \le y \Rightarrow y' \in Y$
- ► **Irreversibilidad**: no se puede deshacer el proceso de producción; sea  $y \in Y$  y  $y \neq 0 \Rightarrow -y \notin Y$

# Propiedades (II)

- ▶ Retornos no crecientes a escala:  $\forall y \in Y \Rightarrow \alpha y \in Y$  $\forall \alpha \in [0, 1]$ ; los planes de producción pueden ser disminuidos ([Figura])
- ▶ Retornos no decrecientes a escala:  $\forall y \in Y \Rightarrow \alpha y \in Y$  $\forall \alpha \geq 1$ ; los planes de producción pueden ser aumentados ([Figura])
- ▶ Retornos constantes a escala:  $\forall y \in Y \Rightarrow \alpha y \in Y \ \forall \alpha \geq 0$ ; Y es un cono (fig. 5.B.6).
- ▶ **Aditividad** (libre entrada):  $y \in Y$  y  $y' \in Y \Rightarrow y + y' \in Y$ 
  - implica que se puede separar la producción en distintas plantas
  - conjuntos de producción agregada deben satisfacer aditividad si hay libre entrada

### Retornos no crecientes

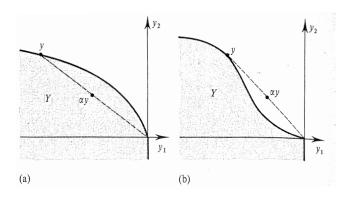


Figura: (a) Cumple; (b) no cumple retornos no crecientes a escala



#### Retornos no decrecientes

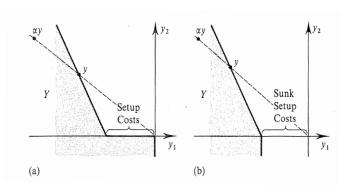


Figura: (a) Costo fijo; (b) Costo hundido  $\Rightarrow$  retornos no decrecientes a escala

Costos fijos o hundidos impiden disminuir la producción

# Propiedades (II)

- ▶ Retornos no crecientes a escala:  $\forall y \in Y \Rightarrow \alpha y \in Y$  $\forall \alpha \in [0, 1]$ ; los planes de producción pueden ser disminuidos ([Figura])
- ▶ Retornos no decrecientes a escala:  $\forall y \in Y \Rightarrow \alpha y \in Y$  $\forall \alpha \geq 1$ ; los planes de producción pueden ser aumentados ([Figura])
- ▶ Retornos constantes a escala:  $\forall y \in Y \Rightarrow \alpha y \in Y \ \forall \alpha \geq 0$ ; Y es un cono (fig. 5.B.6).
- ▶ **Aditividad** (libre entrada):  $y \in Y$  y  $y' \in Y \Rightarrow y + y' \in Y$ 
  - implica que se puede separar la producción en distintas plantas
  - conjuntos de producción agregada deben satisfacer aditividad si hay libre entrada

## Ejercicio

► Ejercicio 5.B.2: Sea f(.) es una función de producción asociada a una tecnología que produce un único producto, y Y el conjunto de producción de esta tecnología. Demostrar que Y tiene rendimientos constantes a escala ⇔ f(.) es homogénea de grado 1.

# Propiedades (III)

- ► **Convexidad**: supuesto importante Y es convexo; si  $y, y' \in Y$  y  $\alpha \in [0, 1] \Rightarrow \alpha y + (1 \alpha)y' \in Y$ 
  - ▶ si no se cumple ⇒ existen indivisibilidades en la producción
  - Si retornos no crecientes ⇒ Y convexo; en caso contrario, Y no convexo
  - Convexidad ⇒ combinaciones de producto "no balanceadas" no son menos costosas que las balanceadas
- ▶ Cono convexo: Y es un cono convexo si  $\forall y, y' \in Y$  y constantes  $\alpha, \beta \geq 0$  se tiene que  $\alpha y + \beta y' \in Y$ .
  - es la conjunción de la convexidad y los retornos constantes a escala

### Índice

Introducción

Conjuntos de producción

#### Max beneficios, min costos

Max beneficios

Min. costos

Geometría: un bien

Agregación

Producción eficiente

### Introducción

- Empresas maximizan beneficios
- ▶ Precios:  $p = (p_1, ..., p_L) \gg 0$
- Precios independientes de plan de producción (empresas tomadoras de precio)
- Y satisface:
  - no vacío
  - cerrado (incluye frontera)
  - disposición gratis (se puede eliminar insumos extra)

### Índice

Introducción

Conjuntos de producción

Max beneficios, min costos Max beneficios

Min. costos

Geometría: un bien

Agregación

Producción eficiente

# Definiciones (I)

- ▶ Dado  $p \gg 0$ , p vector de L precios (insumos + productos)
- ▶  $y \in \mathbb{R}^L \Rightarrow \text{beneficios } p.y$
- ► Maximización de beneficios

$$Max_{y}$$
  $p.y_{s.a}$   $y \in Y$ 

o usando F(.) para describir Y

$$Max_{y} p.y$$
  
 $s.a F(y) \le 0$ 

# Definiciones (II)

- ► Función de beneficios:  $\pi(p)$  asocia a cada p el valor  $\pi(p) = Max \{p.y : y \in Y\}$
- Correspondencia de oferta: y (p) es el conjunto de los vectores que maximizan beneficios

$$y(p) = Max \{ y \in Y : p.y = \pi(p) \}$$

- conjunto, más que vector
- puede no existir, ej. si  $\pi(p) = +\infty$
- ► Ejercicio 5.C.1 de la lista de ejercicios.

### Maximización: varios bienes

▶ CPO: si  $y^* \in y(p) \Rightarrow$  para algún  $\lambda \ge 0$ ,  $y^*$  cumple  $p_l = \lambda \frac{\partial F(y^*)}{\partial y_l}$  para l = 1, ..., L o

$$p = \lambda \nabla F(y^*)$$

- vector de precio y gradiente son proporcionales
- ▶ implica que:  $p_I/p_k = MRT_{Ik}(y^*) \forall I, k$
- Si Y es convexo ⇒ las CPO son condiciones necesarias y además suficientes al problema de maximización

### Maximización: un bien

- ► Empresa produce un bien: *p* precio producto; *w* precio insumos, dados
- Problema  $\underset{z\geq 0}{\text{Max }} pf(z) w.z$
- ▶ CPO: si  $z^*$  óptimo ⇒ se cumple  $p \frac{\partial f(z^*)}{\partial z_l} \le w_l$ , con igualdad si  $z_l^* > 0$  para l = 1, ..., L 1 o

$$p\nabla f(z^*) \leq w$$

el valor producto marginal de cada insumo / utilizado tiene que ser igual a su precio

## Propiedades

#### **Teorema**

Sea  $\pi(.)$  la función de beneficios del conjunto de producción Y, y sea y(.) la correspondencia de oferta asociada. Y es cerrado y satisface la disposición gratis. Entonces, se cumple:

- 1.  $\pi(.)$  es HG1 en p (beneficios reales constantes)
- 2.  $\pi$ (.) es convexa en p (beneficios pueden -a veces- crecer a tasa creciente)
- 3. Si Y es convexo  $\Rightarrow$  Y =  $\{y \in \mathbb{R}^L : p.y \le \pi(p), \forall p \gg 0\}$
- 4. y(.) es HG0 (decisiones reales separadas de nivel de precios)
- 5. Lema de Hotelling: si  $y(\overline{p})$  consiste de un único punto  $\Rightarrow \pi(.)$  es diferenciable en  $\overline{p}$   $y \nabla \pi(\overline{p}) = y(\overline{p})$
- Demostraciones: en clase



## Ley de oferta

- Las cantidades responden en la misma dirección que los cambios de precio
  - si sube el precio de un producto, aumenta la cantidad
  - si sube el precio de un insumo, disminuye la cantidad
- ▶ Ley de oferta:  $(p-p')(y-y') \ge 0$
- $\left( p p' \right) \left( y y' \right) = \left( p.y py' \right) + \left( p'.y' p'.y \right) \ge 0, \text{ dado}$  que  $y \in y(p)$  y  $y' \in y\left( p' \right)$

## Índice

Introducción

Conjuntos de producción

Max beneficios, min costos

Max beneficios

Min. costos

Geometría: un bien

Agregación

Producción eficiente

### Presentación

- ► Si empresa maximiza beneficios ⇒ minimiza costos
- Maximización de beneficios

$$Mix_{z\geq 0} \quad w.z$$
 $s.a \quad f(z) \geq q$ 

- Función de costos: c(w, q)
- **Correspondencia de demanda de factores**: z(w, q)

### Maximización: varios bienes

▶ CPO: si  $z^*$  óptimo y f(.) diferenciable  $\Rightarrow w_l \ge \lambda \frac{\partial f(z^*)}{\partial fz_l}$ , con igualdad si  $z_l^* > 0$  para l = 1, ..., L - 1 o

$$w \ge \lambda \nabla f(z^*)$$

- vector de precio de insumos y gradiente son proporcionales
- ▶ implica que:  $w_I/w_k = MRTS_{Ik}(z^*) \forall I, k$
- ▶  $\lambda$  mide el costo de relajar la restricción  $f(z) \ge q$ ; es decir  $\lambda = CMg = \partial c(w,q)/\partial q$
- Si Y es convexo ⇒ las CPO son condiciones necesarias y además suficientes al problema de maximización

## **Propiedades**

#### **Teorema**

Sea c(w, q) función de costos de Y, y sea f(.) y z(w, q) las funciones asociadas. Entonces, se cumple:

- c(·) es HG1 y cóncava en w, y no decreciente en q (¿intuición?)
- 2.  $z(\cdot)$  es HG0 en w (¿intuición?)
- 3. (Lema de Shepard): Si  $z(\bar{w},q)$  consiste en un único punto  $\Rightarrow$  se cumple que  $\partial c(\bar{w},q)/\partial w = z(\bar{w},q)$
- 4. Si f(z) es cóncava  $\Rightarrow$   $c(\cdot)$  es una función convexa en q (CMg son no decrecientes en q)
- Demostraciones: deberes.

## Índice

Introducción

Conjuntos de producción

Max beneficios, min costos

Max beneficios

Min. costos

Geometría: un bien

Agregación

Producción eficiente

# Tecnologías convexas (I)

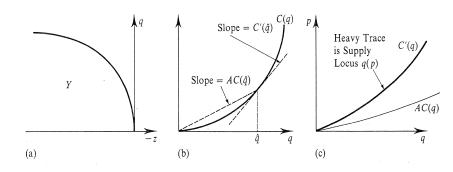


Figura: Rendimientos estrictamente decrecientes a escala

► Tecnología y costo convexas



# Tecnologías convexas (II)

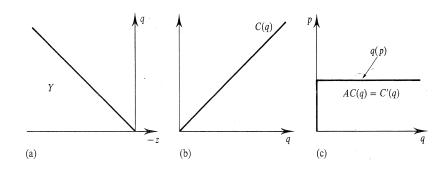


Figura: Rendimientos constantes a escala

► Tecnología y costo convexas

# Tecnología convexa (III)

▶ Costos hundidos ⇒ tecnología es convexa

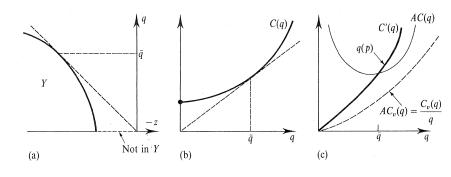


Figura: Convexidad: costos hundidos y costos variables convexos

► Tecnología y costos convexa!

# Tecnología no convexa (I)

▶ CPO no implican que q maximice beneficios

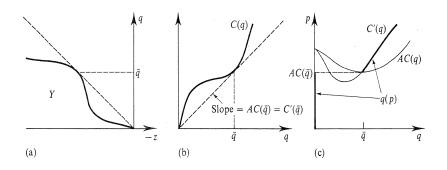


Figura: No convexidad: indivisibilidades

► Tecnología y costos no convexas



# Tecnología no convexa (II)

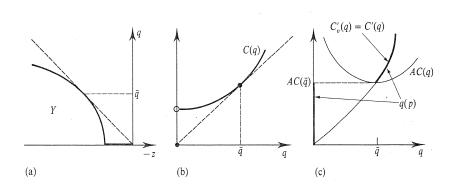


Figura: No convexidad: costos fijos y costos variables convexos

► Tecnología y costos no convexa

# Tecnología no convexa (III)

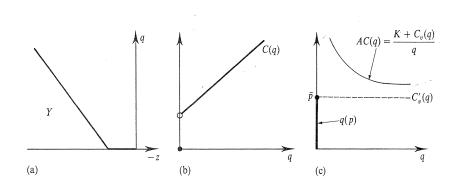


Figura: No convexidad: costos fijos y retornos constantes

► Tecnología y costos no convexa



## Índice

Introducción

Conjuntos de producción

Max beneficios, min costos

Max beneficios

Min. costos

Geometría: un bien

Agregación

Producción eficiente



### Presentación

- Diferente a consumidor:
  - sólo efectos sustitución (tecnológica)
  - no hay efecto riqueza porque no hay restricción presupuestal
- J unidades de producción en la economía, con conjuntos de producción Y<sub>1</sub>, ..., Y<sub>J</sub>
- ightharpoonup Cada  $Y_j$  es no vacío, cerrado y satisface libre disposición
- Función beneficios:  $\pi_j(p)$ ; oferta:  $y_j(p)$
- Oferta agregada

$$y(p) = \sum_{j=1}^{J} y_j(p) = \left\{ y \in \mathbb{R}^L : y = \sum_{j} y_j \text{ para algún } y_j \in y_j(p), \right.$$

$$j = 1, ..., J$$

# Proposición

#### **Teorema**

Para todo  $p \gg 0$ , tenemos

1. 
$$\pi^*(p) = \sum_{i} \pi_i(p)$$

2. 
$$y^*(p) = \sum_{j} y_j(p) \left( = \left\{ \sum_{j} y_j : y_i \in y_i(p) \, \forall j \right\} \right)$$

#### Demostración.

Libro MC-W-G página 148.

#### Intuición

El beneficio agregado que se obtiene de la maximización de beneficios individuales -dados los precios- es el mismo que se obtendría si las empresas coordinaran su producción conjunta

# ¿Qué implica?

- 1. La asignación de q entre las empresas minimiza los costos
- 2. El costo total de producción = suma de costos agregados
- 3. El análisis hecho para una empresa es idéntico para J empresas

#### MC-W-G

En resumen: cuando la empresa maximiza beneficios dados los precios, el lado de la producción de la economía se agrega en forma bonita

## Índice

Introducción

Conjuntos de producción

Max beneficios, min costos

Max beneficios

Min. costos

Geometría: un bien

Agregación

Producción eficiente

### Introducción

#### Definición

Un vector de producción  $y \in Y$  es eficiente si no hay otro vector  $y' \in Y$  tal que  $y' \geq y$  y  $y' \neq y$ 

- ► Un vector de producción es eficiente si no hay otro factible que genere tanto producto como y sin utilizar insumos adicionales, y que pueda producir más de algunos productos o utilice menos de algunos insumos
- ▶ Todo vector y eficiente  $\Rightarrow$  tiene que estar en la frontera de Y ( $\Leftarrow$ )

# Teoremas (I)

#### **Teorema**

(Versión Primer teorema del Bienestar) Si  $y \in Y$  maximiza beneficios para algún  $p \gg 0 \Rightarrow$  es eficiente

#### Demostración.

Deberes,

- Se cumple independientemente de la convexidad del conjunto Y
- Si se suma Agregación  $\Rightarrow$  si un conjunto de empresas maximiza beneficios de forma independiente respecto al -mismo- vector de precios  $p \Rightarrow$  la producción agregada es socialmente eficiente

# Teoremas (II)

#### **Teorema**

Si Y es convexo  $\Rightarrow$  todo vector  $y \in Y$  es un vector de producción que maximiza beneficios para algún vector de precio  $p \ge 0$ .

#### Demostración.

Libro MC-W-G página 151.

Versión "Segundo teorema del bienestar": puedo alcanzar cualquier vector de producción factible en forma eficiente ajustando p